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ABSTRACT 

The purpose of this study was to investigate the influence of plastic and silty fines on 

the shear strength and the porewater pressure (PWP) response of Ottawa Sands. The sands 

have been mixed with both plastic and silty soils at different percentages.  The fines were 

added ranging from 5% up to a threshold value by weight for constant dry unit weight and 

sheared in consolidated undrained triaxial compression (CU) test at a constant small strain 

rate. The advantages of using skeletal void ratio in cases where fines are present within pure 

sand samples are also discussed.  

The properties of plastic fines such as the plasticity of the fines, the percentage of 

fines content, and the clay mineralogy are studied to understand the influence on the 

undrained behavior of sands. In order to have a better understanding of the generation and 

dissipation of PWP during undrained shearing in sandy and sandy soils with plastic and non-

plastic fines, a novel PWP measurement system was designed to measure PWP at the center 

of a triaxial specimen. Factors influencing the development of PWP such as strain rates, the 

relative density of the sands and the percentage of fines content along with their plasticity 

index were investigated. Results from the study indicated that the effect the fines on the soil 

response varies on the amount and type of fines and also on the initial relative density of the 

host sand. 
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CHAPTER 1.  INTRODUCTION 

The study of engineering properties of soil has always revolved around research 

conducted on two distinct types of materials namely pure clays and pure sands. These two 

materials are on opposite ends of the spectrum when discussing the very basic fabric of soil. 

Soils are very different in their properties related to particle size, hydraulic conductivity and 

hence also differ in behavior when sheared. The pore water pressure generation and 

dissipation behavior within the soils are also very different during shearing and hence should 

be analyzed separately.  

Most of the studies in the literature focus on typically pure clay or pure sand. 

However, soil mixtures such as clayey sand, silty sand, etc. are more naturally occurring than 

pure sands or silts or clays. Previous research has shown that the presence of the fine 

particles of silt or clay within the sands affects the behavior of sand due to their small size 

and smaller void spaces (Carraro, Prezzi, and Salgado, 2009; Maleki et al., 2011; Murthy et 

al. 2007; Thevanayagam, Ravishankar, and Mohan, 1997). In sand mixtures, the change in 

the internal void ratio due to the presence of different materials of different sizes are 

influential in affecting the generation of pore water pressure. The behavior of the pore water 

is especially important in order to understand the behavior of the soils under various loading 

conditions. The issue of initiation and generation of excess pore-water pressure is critical in 

understanding the prediction of liquefaction, slope stability, the behavior of foundations, the 

stability of embankments, etc. in sands and silty or clayey sands.  

Previous studies paint a complex picture of nature the fines play in the behavior of 

soils leading to liquefaction Zlatovic and Ishihara, (2013). With regard to the effect of plastic 

fines, there is a general assumption that the presence of plastic fines should increase the 
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stability and resistance to liquefaction Bayat et al. (2014). Numerous studies have also 

reported that the effect of the plastic fine on the behavior of the soil depends mainly on the 

plasticity index and the number of fines (Ishihara, 1993). Nevertheless, there have been 

observations made at various earthquake sites where the ground has undergone liquefaction 

phenomenon and plastic fines have been observed within the sand present Ishihara (1993). 

Therefore, it can be shown that the behavior of sands in the presence of fines is more 

complex than previously thought. 

1.1. Need for Testing 

During moderate or strong earthquakes, extensive damage can occur to infrastructure 

such as earth dams, embankments, ports, building foundations, etc. due to the liquefaction 

phenomenon. A significant amount of research has been done in the past on the effects of 

plastic fines and silts on the behavior of the shear strength and liquefaction resistance in 

addition to sands Carraro, Prezzi, and Salgado (2009). It has been understood in the 1960s 

that the presence of non-plastic and plastic fines in some manner resisted the liquefaction of 

sands Polito, (1999). However, numerous case histories concerning failure due to 

liquefaction-induced by earthquakes were observed where the soils contained plastic fines 

present within its sand deposits Carraro, Prezzi, and Salgado, (2009). The Mino-owar (Yang, 

2015) in Japan consisted of soils with 10% fines Kishida (1969), while it has also been 

reported that sands with clay content have been seen to liquefy at many instances during 

earthquakes Kishida (1969).  Many of the results acquired after research carried out in this 

area have provided conflicting results especially in terms of soil behavior with respect to 

their potential to liquefy. This has led to questioning the basic assumptions we had regarding 

the behavior of soils with fines. 
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The role of fines especially on the behavior of sands and resistance to liquefaction 

and static liquefaction has been a topic of debate for many years.  The reason for the debate 

has been regarding what factors affect the behavior of soils and how they affect it. The nature 

of the sand behavior changes in the addition of fines. However, in the case of plastic fines, 

more parameters than non-plastic fines, such as plasticity of fines, fines content, clay 

mineralogy, and pore water chemistry, may influence the undrained behavior of sands. One 

of the most important effects of fines on the undrained behavior of sands is their effects on 

the instability of sands. The fines can have an important effect on the fabric of the soil which 

can influence the resulting stress-strain response. To evaluate the potential strain softening/ 

hardening response, and its effect on the collapsibility of sands, it is useful to study the 

effects of fines content on sands, variation in plasticity and gradation on the behavior of soil 

samples. 

Liquefaction is a natural phenomenon that takes place in saturated sands due to the 

increase of excess pore water pressure to a particular point where it equals the normal stress 

causing the effective stress to become zero. During research and engineering site 

investigations, liquefaction analysis is carried out using results from undrained laboratory 

shear tests. Liquefactions occur when for any given loading condition, the excess pore water 

pressure equals the effective stress. Many natural soils contain a significant amount of fines 

and may lead to instability phenomena to occur due to the presence of these fines. Saturated 

soils lose some of their shearing strength during cyclic loading as well Carraro (1999). But it 

is important to know its behavior under monotonic loading first before dealing with a more 

complex phenomenon of cyclic loading. Therefore, an investigation of the effects of different 
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fines, their characteristics on the generation of pore water pressure is necessary in order to 

correctly analyze its effects on the behavior of soils under shear stress. 

1.2. Objectives of the Present Investigation 

The purpose of the present investigation was to observe the behavior of mechanical 

strength and behavior of pore water pressure of sand samples with different proportions of 

fines with different characteristics. Different types of soil such as silty sands, clayey sands, 

and pure Ottawa sands were tested in this study. The soils were characterized based on 

particle size analysis, Attenberg’s limits, hydrometer, etc. The main objectives of this 

research were to: 

1. Measure the static undrained response of sands at various void ratios; 

2. Experimentally study the behavior of pore water pressure within the soil simple by 

applying pore water pressure transducers in the middle of the length of the sample 

and investigate the factors affecting PWP generation; 

3. Analyze the pore water pressure behavior with the presence of plastic, non-plastic 

fines and in pure sands;  

4. Analyze the transition of soils from stable to unstable during monotonic loading 

based on the type of fines added to the sand specimens; 

5. Analyze the transition of soil stability due to the presence of fines; and 

6. Create a framework to describe the patterns of the presence of fines in the sand. 
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CHAPTER 2.  LITERATURE REVIEW 

2.1 Introduction  

Unlike other construction materials used like steel, concrete, etc. soil behaves 

differently. It does not have a unique shear strength associated with it and depends upon 

boundary conditions, external factors, stress history, etc. But the mechanical behavior of the 

soil is an important aspect that needs to be studied in order to correctly understand their 

behavior on the application of stresses and a triaxial test has been used for a long time in 

determining the various variables associated with it. 

The mechanical behavior of clean sands was first observed by Coulomb (1776) where 

he worked on problems related to earth pressures against retaining walls. The most 

commonly accepted theory of shear strength is one of the major contributions to geotechnical 

engineering. Terzaghi (1925) almost 150 years later first presented the first textbook on soil 

mechanics building his work on works done previously by engineers namely Collin, Darcy, 

and Rankine. These studies continued over the years and gave us the definitions that led to 

the analysis of engineering behavior wide range of spectrum from pure clays to pure sands. 

These soils differ in properties due to the basic fundamental structure and hence behave 

differently. They have opposite extremes of hydraulic conductivity and particle sizes; sands 

being more permeable as compared to clays and having bigger grain sizes as well. These 

hydraulic conductivities affected other properties of soil such as consolidation and generation 

and dissipation of pore water pressure during the presence of a load Carraro, Prezzi, and 

Salgado, (2009); Holtz and Kovacs (1981). 
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2.2. Shear Strength of Soils 

If the load on the soil increases above a certain limit so that the deformations become 

more than the accepted value, the soil is assumed to have failed in such a case. In this case, 

the strength of the soil is measured as the maximum or ultimate stress a soil can sustain. In 

the case of soils, failure leads due to excessive applied shear stress. The shear strength of 

soils is generally defined as the limiting resistance or ultimate resistance offered by the 

material during the loading and unloading. The shear stress in the soil can be determined in 

two ways, by in-situ soil tests like cone penetrometer tests or vane shear test or by carrying 

lab tests on soil samples. In the in-situ tests, the results obtained are indirect, i.e. mostly from 

correlations with the tests done in the laboratory or via back calculations from actual failures. 

Laboratory tests are done with fair accuracy although the sample runs a high risk of being 

disturbed during extraction. 

During the turn of the 20th century, Mohr hypothesized a criterion for failure plane in 

a material by a critical combination of normal stress and shear stress. The relation between 

normal stress and shear stress and the failure plane can be given by: 

τ f = f(σ f) (1) 

where τf is the shear stress at failure and σ f is the normal stress on the failure plane. The 

failure defined envelope defined by the failure plane is shown in Figure 1. 

 The component “c” of the shear stress which is equal to the intercept on the X-axis is 

called apparent cohesion and the angle which it makes with the Mohr circle is determined 

with Φ or the angle of internal friction. As shown in Figure 2, if a normal and shear stresses 

occur on point on a plane in a soil mass, a shear failure will not occur on that plane (Point A). 

If the combination of normal and shear stresses occurs at Point B then shear failure will occur  
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σ 

    p  c 

 

Figure 1. Mohr’s circle and failure envelope  

 

σ 

Figure 2. Position of stress on Mohr’s circle  

along that plane. A state of stress cannot occur on Point C since it lies outside the failure 

plane which means that the state of failure has already occurred before that condition was 

reached. Equation 2 defines the shear stress of failure. 

τf = c’ + (σ’f) tan Φ’  (2) 

where: 

 τf = shear stress at failure plane 

 c = cohesion intercept in terms of total stress 

 c’ = cohesion intercept in terms of effective stress 

 σf = total normal stress at failure 
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 σ’f = total effective stress at failure 

 Φ = friction angle in terms of total stress 

Effective stress parameters between soil particles are accepted as the basic factor 

influencing strength. The total stresses and parameters related to it are generally considered 

where drained conditions on shear strength are more critical than that of undrained conditions 

such as stability of slope problems. Total stress parameters are used where undrained 

conditions are more critical in shear strength such as bearing capacity problems in shallow 

foundations Ölmez, (2008). 

2.2.1. Shear strength of cohesionless soils 

The shear strength of a cohesionless soil maybe is represented by Equation 3. This 

equation is a modification of Equation 2 which is a special case as c= 0. 

τf = (σf) tan Φ (2) 

The shear stress of cohesionless soils depends on the angle of internal friction, which is 

caused by the interlocking of coarse, angular grains. The friction angle increases with the 

increase of relative density and decreasing the void ratio. It also depends on the gradation of 

soil particles where well-graded sand has a higher friction angle than poor, or gap graded as 

it leads to a better interlocking of grains. The shear strength of the soil is affected by the 

presence of pore water pressure within the samples and hence the shear strength of saturated 

cohesionless soil is given as: 

τf = (σf – u) tan Φ (3) 

where u = pore water pressure. 

When the pore water pressure approaches the value of the total stress within the soil, 

the shear strength reaches zero. This is when the soil is said to have achieved instability and 
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might undergo failure at slopes or create a sand boil phenomenon. The shear strength of 

cohesionless soils is conventionally measured using a direct shear test and triaxial test.  

2.3. Undrained Triaxial Compression Test (CU) 

The triaxial test device is one of the most commonly used tests to measure shear 

stress and pore water pressure within a soil sample Figure 3. It is much more versatile than 

any other test in controlling drainage, applying principle stresses and controlling stress paths 

for the test. In such a test, a cylindrical soil specimen is subjected to an axial compression 

stress sigma 1 (1) and radial confining stress sigma 3 (3). A triaxial test is a relatively 

simple test used for measuring numerous properties of soil. The success of the triaxial device 

lies in the fact that it allows the user to vary the drainage while running a test as it facilitates 

in running both a drained and an undrained test. Drainage is provided to the soil specimen as 

water flows from bottom to top under the desired pressure. In a drained test, volume change 

in the soil can be measured whereas in an undrained test, the change in pore water pressure is 

calculated. In cases of soils, just by controlling the drainage values the volume change is 

prevented and the soil is sheared undrained. In the case of drained tests, the volume change in 

the soil occurs due to the applied pressure sigma 1. In the case of sands, when loaded 

statically the sand drains instantaneously because they have higher permeability as compared 

to silts and clay. Unlike a direct shear test, one can measure the pore water pressure within 

the sample while running an undrained test in a triaxial test with much ease. Also, unlike a 

direct shear test, one can apply principal stresses in known direction using air or water or oil 

in a triaxial cell.   The soil is placed in a rubber membrane placed in a cylindrical chamber. In 

most cases, water is used to apply desired confining stress. The membrane is used to prevent 

the water from entering the soil specimen and making sure that the principal stresses are  
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Figure 3. Monotonic Triaxial Testing Chamber 

separately applied to the specimen.  A conventional triaxial testing system is used in this 

research to measure the various properties of the soil. Remolded and undisturbed specimens 

can be used for both testing of both cohesive and cohesionless soils (Baldi, Hight, and Thomas, 

1988; Holtz, 1981). 

Conventionally, the pore water pressure within a sample in a triaxial test is only 

measured at the two ends of the sample. However, that does not give us a complete picture of 

the behavior of soil, due to the development of strains and pore water pressure at various 

points within the sample. Additional pore water pressure measurements distributed 

throughout the height of the specimen would allow for additional understanding of the 
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generation and dissipation of pore water during loading.  The results of the tests carried out 

by in this thesis provide insight into the behavior of PWP during a monotonic triaxial test at 

various points along the length of a sample to provide a more accurate understanding of silty 

and clayey sands during shearing. The testing program described in this research utilizes 

triaxial tests to observe the difference in the behavior of Ottawa sand with the presence of 

Kaolinite clay and loess fines.  

2.4. Microstructure of the Soil Fabric 

“Fines content” refers to the particles with grain size less than 0.075 mm which is 

made of the same or different parent rock. The microstructure of the sand and fines with size 

D and d of the particle mixes can be arranged in three extremely limiting categories. The 

different arrangement in the structure lead to different intergrain contact and may lead to a 

different stress-strain response. According to the intergrain state concept, a transitional/ 

threshold/limiting fines content FCth exists: sand-dominated behavior passes to fines-

dominated behavior when the fines content is beyond the FCth. 

The 3 extreme categories by Thevanagayam et al. (2002) are displayed in Figure 4. In 

the case of (a) (FC < FCth) the fines present within the system are divided into 3 parts 

depending upon the amount of fines present.  

 Case (i): The soil is mostly coarse-grained with fines confined within the voids 

between them. These fines have little or no contribution towards supporting the 

soil skeleton. 

 Case (ii):  As the fines content increases within the sand specimen, the fines 

within the voids increase and they start partially supporting the coarse-grained 

skeleton. 
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Key:  (a) The coarse grains are in contact with fines present in between them, case (i-iii) 
  (b) Primarily the fines are in contact, case (iv) 
  (c) Layered system. 

Source: Thevanayagam et al. (2002) 

 

Figure 4. Variation in the arrangement of the microstructure in a sand and fines mix 

 Case (iii): As the fines content increases further, they start separating the coarse 

grains and play a considerable role in the stress distribution within the soil 

skeleton. The fines reach a threshold limit at the case (iii). 

 Case b: (FC > FCth) The coarse-grained soils are fully dispersed in fines. 

 Case c: The soils are layered as fines and coarse-grained one below the other. 

 FCth: The same framework used to describe the small-strain stiffness and the 

shear strength of clean sands may be used for silty sands, provided that the fines 
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content remains below some limit also called threshold fines content (Salgado, 

Bandini, and Karim, 2001).  

As the amount of fines in the coarse grain matrix increases, there comes a point where fines 

start to dominate the soil behavior. This was further explained in detail by Thevanayagam et 

al. (2002) and Zlatovic and Ishihara (2013), where they explained the intergranular void ratio 

characterized by the stress-strain response of sand and silty/clayey sand mixes.  

2.4. Intergrain State Concept 

The intergrain state concept was proposed by Thevanayagam (1998), where the 

author defined the intergranular void ratio in order to define the state of sand instead of the 

global void ratio. It was later redefined as a skeletal void ratio by several researchers, such as 

Salgado, Bandini, and Karim (2001). For soils with a low fines content or FC< FCth the 

skeletal void ratio is defined as: 

esk = 
𝑒+𝑓𝑐

1−𝑓𝑐
  (5) 

where fc is the % of fines content in decimals.  

For sands with high fines content where FC > FCth , the skeletal void ratio is defined as  

esk = 
𝑒

𝑓𝑐
 . (6) 

 Thevanayagam et al (2002) proposed that, at low fines content, the sand particles are 

in contact with each other and majorly constitute the soil skeleton while the fines only make 

a secondary contribution. At high fines content, the sand particles only make a secondary 

contribution to the soil behavior whereas fines majorly contribute towards the stress 

distribution. In other words, in the intergrain state concept, the fines are defined as voids and 
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are assumed to participate partially or not at all in the resistance to shearing whereas when 

the fines are high, then the coarse grains are assumed to be voids and are hence considered to 

participate only partially to the void ratio.  

For the investigation of the effects of the addition of fines on the behavior of sand, 

many different approaches have been carried out by many researchers. Kubis et al. (1998), 

and Pitman, Robertson, and Sego (1994a) used a constant void ratio of the host sand, whereas 

Georgiannou, Burland, and Hight (1990) and Thevanayagam, Ravishankar, and Mohan 

(1997) used the concept of granular void ratio. Therefore, it can be seen after the research on 

sands and on sands containing fines that for proper evaluation of experimental results and, in 

order to correctly determine the engineering properties of the sand with fines matrix, a proper 

parameter needs to be determined to quantify soil density. Contradictory conclusions can be 

obtained on the failure of choosing a correct parameter to measure soil density (Carraro, 

Prezzi, and Salgado, 2009; Maleki et al., 2011; Murthy et al. 2007; Thevanayagam, 

Ravishankar, and Mohan, 1997).  

The level of participation of different soil particles of different sizes within the soil 

matrix and their ability to transfer stress and strains within the interparticle and their ability 

to offer resistance is what dictates the behavior of a soil body. As shown in Figure 5, Karim 

and Alam (2017) explained how the sand with silt interact upon at different silt content. The 

behavior of the sand changes after reaching the limiting fines content also called threshold 

fines content. Void ratio and relative density have been used as the index properties for a 

mechanical response correlation, but they are not sufficient as they account for the void 

spaces but fail to consider the presence of smaller particles within the voids.  
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Source: Karim and Alam (2017) 

Figure 5. Visualizing limiting fines content  

 Mitchell and Soga (1976) and Kenny (1977) realized that for mixed soils with fine 

particles, because of their size, nature, or position, they may not participate in the force 

transfer mechanism, and thus the space they occupy should be considered as void. This led 

them to introduce another index known as the granular void ratio (eg). While void ratio (e) is 

defined as Vv/Vs and is the most commonly used method to calculate the void ratio in a 

soilelement, they do not consider the volume occupied by the fines. The conventional 

definition of void ratio (e) as used in clean sands, can be misleading since e value of void 

ratio cannot describe samples with different fines contents. Putting it another way, samples 

with the same value of esk will have different void ratios depending on their fines contents. 

However, in the same way, that void ratio (or relative density) is inadequate for 

characterizing the behavior of sands, so the skeletal void ratio is inadequate on its own for 

characterizing clayey sands since it gives no indication of the distribution of clay within the 

soil (Georgiannou, 1988; Lade and Yamamuro, 1997; Pitman, Robertson, and Sego. 1994b; 

Thevanayagam, 2007; Thevanayagam et al., 2002; Vaid and Negussey, 1988; Zlatovic and 

Ishihara, 2013).  
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The skeletal void ratio considers the volume occupied by the fines as if it were void 

space. It is particularly better in representing sand with fines system as compared to the void 

ratio according to the studies carried out in the past (Thevanayagam, 1998). Although more 

versatile than void ratio in order to evaluate the states of soils, it fails to take into 

consideration the plasticity of the fines present in the system and hence have its own 

shortcomings (Carraro, Prezzi, and Salgado, 2009; Murthy et al., 2007; Thevanayagam, 

1998; Thevanayagam et al., 2002). The sand with plastic fines has a higher granular void 

ratio than the void ratio of sedimented clean sand. It modifies the fabric of the sand, 

including contact conditions, so that changes in undrained brittleness can take place at 

constant granular void ratio; increases in clay fraction at constant e, reduce the stability of the 

fabric (Carraro, Prezzi, and Salgado, 2009; Thevanayagam, 2007; Thevanayagam et al., 

2002; Vaid and Negussey, 1988). Sand skeleton void ratio is the void ratio that would exist in 

silty sand if all the silt particles were removed, leaving only the sand grains and voids to form 

the soil skeleton. The liquefaction of the soils also could be seen is independent of the 

amount of fines in the soil system.  

Although different researchers used different equations for calculating the 

intergranular void ratio, Chu and Leong (2002) showed that different equations used to 

calculate the intergranular void ratio are essentially identical. They also noted that the 

definition of the intergranular void ratio by assuming that fines are completely nonactive is 

not universally applicable for the entire range of fines content. 

2.5. Contribution of Fines towards the Behavior of Mixed Soils 

The majority of the investigations in granular soils have been carried out on pure 

sands (Kenney, 1977; Mitchell and Soga, 1976). However, most natural soils contain some 
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amount of clay content as well as silt content. The nature of granular material during shear is 

determined by the stress levels, initial conditions of soils, void ratio, and effective stress-

strain behavior strongly in the presence of small strains whereas at intermediate and high 

strains it is the void ratio that governs the behavior of soil.  

In the case of sands, the behavior is modified depending on the void ratio or relative 

density (Lade and Yamamuro, 1997). For example, loose saturated sands can exhibit a strain-

softening behavior under undrained loading leading to liquefaction under lower effective 

stresses. However, the addition of fines or their presence in sands affects their fabric and can 

influence their stress-strain behavior as well. Previous work has investigated the behavior of 

sands due to the presence of fines (Georgiannou 2006a; Georgiannou, Burland, and Hight 

1990; Ni et al. 2004Pitman, Robertson, and Sego 1994a; Thevanayagam 2007; 

Thevanayagam et al. 2002). Thevanayagam et al. (2002) investigated the strength response 

due to the effect of sand mixed with silica and kaolin with samples of different granular void 

ratio. Each sample was prepared with the same sample preparation techniques as well as the 

same fines content. However, they observed different behavior showed by the soils in the 

presence of the different types of fines especially with respect to the undrained shear strength 

at steady state at the same granular void ratio in the soils. This means that the only factor 

affecting the outcome of the stress-strain behavior was the properties of the fines. In other 

words, the fines do not act merely as voids but act better or worse than the voids that they 

encompass. Therefore, it must be the properties of the fines that lead to this dichotomy. 

The results as provided by Thevanayagam et al. (2002) are presented in Figure 6. 

They show different relations for the host sand, sand with kaolin and sand with silica. As 

shown in Figure 6, the strength of the silica fines with host sand is higher than the host sand  
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Source: Thevanayagam et al. (2002) 

Figure 6. Sus vs eg for silty sand at various fines content 

at the same granular void ratio whereas that of kaolin mixed with sand is less than that of the 

host sand. The observation made for plastic fines is consistent with findings reached by 

Georgiannou, Burland, and Hight (1990). This means that the fines present in the voids do 

not act as voids but may act better or worse than voids. It depends not only on just the 

properties of the fines but also on the granular particle interaction in the presence of fines. 
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2.6. Characteristics of Soil States 

 Lade and Yamamuro (1997) identified four characteristic types of undrained behavior 

in sands under monotonic loading: static liquefaction, temporary liquefaction, temporary 

instability, and instability. Static liquefaction occurs at low confining pressures and is 

characterized by large pore water pressure development resulting in zero effective stress and 

an increase in confining stress in this region leads to an increase in the friction angles. 

Temporary liquefaction occurs in the stress region above static liquefaction and is 

characterized by stress difference that reaches an initial minimum value and then increases at 

a particular point to a value much higher than the initial peak. This increase is caused due to 

the dilatant tendencies in the behavior of the soil which further causes the PWP to decline 

and thus increasing then effective stress again.  

Temporary instability is similar to temporary liquefaction except for the fact that the 

stress difference is lower in temporary instability than during temporary liquefaction. 

Another aspect of temporary instability is that the soil undergoes decreasing dilation with the 

increase in confining pressure as opposed to soil showing increasing dilation in increasing 

confining pressure in temporary liquefaction. The stress path commonly observed in the sand 

(Figure 7 and 8) was first introduced by Yamamuro and Lade (1998) to describe the behavior 

sands under stress. There are three types of undrained behavior sand undergoes and this 

behavior is called “Normal Behavior”. Under low-pressure sand undergoes contractive 

behavior and then undergoes suppressed dilation after passing the phase transformation line. 

This line is also called a steady-state line. The sand undergoes dilation caused after attaining 

negative pore water pressure where the stress path is directed towards the higher effective 
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confining pressure as shown in the part of Figure 7 and, under this case, the sand is entirely 

stable.  

The middle-stress path as shown in part B of Figure 7 for clean sands, is experienced 

at medium-high confining pressures. This results in greater positive pore water pressure 

which is large enough to cause a “wrap around” the top of the yielding surface. The stress 

difference increases and reaches an initial peak before a decrease in the pore water reduced it. 

The undrained sand behavior during the declining part of the curve is unstable in the sense 

that the sand cannot sustain a constant stress difference. However, as the effective stress path 

crosses the phase transformation line, the suppressed dilation produced negative pore water 

and it leads to a higher stress difference. At this point, the sand becomes stable again. Thus, 

temporary instability is observed in the middle ranges. 

 

Source: Lade and Yamamuro (1997) 

Figure 7. Four distinct stress paths in sands 
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The third effective stress paths which is also observed at higher confining pressures 

indicate large contractive tendencies (Figure 8 and 9). Under this case, the pore water 

pressure increases continuously under strain and the effective stress path reaches a peak and 

after which it keeps declining with the increase in PWP. In this case, the soil undergoes a 

constant decline and the phase transformation line is not encountered and the eminent decline 

continues till it reaches the failure surface. This behavior pattern is generally considered 

liquefaction observed in part b of Figure 9.   

(a) (b) 

 

Figure 8  (a) Dilative behavior of sand causing stable deformation;  

                   (b) Phase transformation and unstable stress-strain curve 
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(b) (b) 

 

Figure 9.  (a) Unstable behavior of sand 

        (b) Liquefaction of sand 

2.7. Effects of Plastic Fines 

Unlike the non-plastic fines, the behavior of plastic fines depends on more factors like 

clay mineralogy, fines content, the plasticity of fines, pore water chemistry, etc. which 

influences the fabric of the sands along with the density and stress states.  Therefore, it is 

important to study the behavior of sand in the presence of plastic fines as much as behavior 

in the presence of silt and other non-plastic fines. Georgiannou (2006b) showed that the 

particles of mica fines which are flat in shape lead to the different behavior of sand than the 

addition of kaolin fines which are more rounded in shape. The importance of shape, size, and 

location of the particles is critical in determining the behavior and hence the consideration of 

soil fabric is very important. At the same granular void ratio, an increase in fines content 

would eventually force the coarser grains to disperse fully in the finer grain matrix. In effect, 
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it is the modification of the structure by the added material that results in the observed 

modified behavioral response Georgiannou (2006b). 

However, numerous studies have reported that the behavior of the fines is affected 

majority in predominantly soils with plastic fines by the plasticity of the fines added and their 

amount. Georgiannou et al. (1990) investigated the effect of increasing clay content on the 

undrained behavior of the sand with kaolin clay. They observed that as the clay content 

increased from 4.6–10% the initial small strain response is unaffected. However, at a 

constant skeleton void ratio as the clay content increased to a critical value, the undrained 

shear strength of the sand kaolin matrix at a quasi-steady state decreased. Thus, the undrained 

brittleness for the strain at the quasi-steady state increased with the increase in the fines 

content. The quasi-steady-state was defined by Ishihara (1993) as the state when the soil 

behavior changes from contraction to dilation. Ishihara also observed that this trend reversed 

when the clay content increased more than 20% and especially about 30%, the soil is no 

longer dilatant in nature and shows behavior similar to that of clays (i.e. the clay dominates 

the behavior in the host sand). However, the author had not made any comment with respect 

to the threshold limit of the fines content  

 Pitman et al. (1994a) observed that hardening occurs at a very high fines content of 

40% strain. The soil changes from its brittle behavior to ductile which implies that at 0% 

fines content the soil has more potential for large deformations due to strain softening. The 

steady-state condition which is represented by constant state stress can only be achieved at a 

very large value of strain which could be difficult to achieve in a lab due to equipment 

limitations. 
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 Georgiannou (1988) conducted an investigation on the behavior of clayey sands 

under monotonic and cyclic loading and concluded that as the fines content of the soils 

especially in loose state increase the dilatant behavior of the soils is suppressed and the 

response gradually becomes controlled by the fines matrix at a certain amount of fines 

content, also called threshold fines content. Georgiannou, Burland, and Hight (1990) 

performed further experimental studies using Ham river sand into a kaolin suspension 

concluded that this method creates a material which is markedly less stable, which has a 

higher granular void ratio and exhibits a higher undrained brittleness behavior if compared 

with the same sand that is sedimented through clean water (i.e. contains no clay) Ölmez, 

(2008). These authors also observed that as the granular void ratio decreased as the plastic 

fines within the soil increases up to a certain critical value and also affected the undrained 

shear strength of the soil at quasi-steady state decreases. Ölmez also stated that the presence 

of clay fractions did not reduce the angle of shearing at critical state for the sands but 

affected the stability of the fabric, thus reducing the undrained shear stress.  

A strain-controlled approach is used to run the test as the increase in porewater is 

controlled by the amount of induced stress Bayat et al. (2014). The study inculcated the 

results of tests run on sand specimens with the addition of 0–30% kaolin fines with the same 

relative density and consolidation with a mean confining pressure of 50psi. According to the 

authors, the peak strength decreases as the fines content increases up to a threshold content of 

fines. 

 Ovando-Shelley and Pérez (2009) investigated the undrained behavior of moist 

tamped sands with fines at 3%–7% fines at moderate to high strains and found that the 

presence of fines reduces the strength and stiffness and potentially increases the porewater 
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pressure within the soil sample. However, it depends upon the granular void ratio and the 

stress state relative to the failure envelope and loading path. They found that the fines in 

small quantities do not contribute to stress bearing capabilities of the host sands but they do 

modify the fabric of the sand, generating more loose and unstable structures. Sands 

consolidated under different stress ratios, the potential for generating PWP during undrained 

loading depends on the initial intergranular void ratio, on the relative position of the stress 

state with respect to the failure envelope. The relationship between granular void ratio and 

the stress-strain relationship is important in many practical situations in which the initial state 

of NC clay sands occur at different varying effective stress ratios and can be used to 

understand the behavior of slopes, embankments or base of dams and footings.  

2.8. Effect of Silts and Non-plastic Fines 

The occurrence of silty sand around the world has led to more research on the 

influence of fines on sand behavior. Many researchers have carried out research in the past 

by testing a different combination of fines content with sands at different relative densities to 

determine the understanding of both the stability of sand and also its effect on the sand 

fabric.  

Broadly speaking, the observations noted by these researchers were directly related to 

the amount of fines present in the sand matrix. For example, at low fines content, it was 

observed that the host sands dominate the behavior of the soil under stresses due to the 

dominance of the sand in the soil matrix and since the fines present do not completely 

acquire the void spaces present in the soil. When the fines exceed a certain value in the sand, 

the soil behavior is dominated by the fines and the sand no longer controls the behavior 

during shear. This limit is also called as the limiting threshold of fines, after which the fines 
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start dominating the behavior of the soil and the behavior changes. This also leads it to affect 

the instability of the soil matrix. Thevanayagam and Mohan (2000) proposed that during the 

presence of low fines content in the soil, the fines do not completely occupy the void space 

present between the sand particles and hence act secondary during the overall soil behavior 

on loading.  

 Pitman, Robertson, and Sego (1994b) tested Ottawa sand with non-plastic crushed 

quartz and kaolinite at a confining pressure of 350 KPa with varied fines content ranging 

from 0–40%. They concluded that the effect of non-plastic fines was to create slightly more 

dilative responses resulting in the sand that is less likely to liquefy. Data from Pitman et.al. 

(1994b) showed the variation in undrained shear strength of soils with fines under constant 

effective stress with varying fines content. The data also showed that sands with plastic and 

non-plastic fines with the same amount of fines content vary in behavior and also in the 

undrained shear strength. This means it is not just the amount of fines but also their behavior 

and other properties like plasticity are an important factor affecting the strength of the soils. 

 While undertaking a comprehensive study to explain shear strength, small scale 

stiffness critical state and fabric of sands containing fines, Carraro et al. (2009) concluded 

that in case of low fine content where fc<<15% where the fines can be either non-plastic or 

kaolin observed that the addition of non-plastic fines to the host sand increases both the peak 

and critical state friction angles of the soil and make it more dilative than clean sand for loose 

states. On the other contrary, the addition of fines of kaolin clay to the host sand decreases 

both the peak and critical state friction angles of the soil and imparts a less dilative and more 

contractive response for soils in all states. In other words, they observed that non-angular silt 

particles tend to interact with the irregularities and produce a jamming response during 
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shearing whereas kaolin clay produces more lubrication or smoothening response during 

shearing of the soils. 

These studies on sand revealed that the silt makes the soil more unstable or even 

liquefiable on its addition to sands whereas others specify that the silt initially decreases the 

resistance to liquefaction potential and increases after a specific quantity of silt is added to 

the mixture. It was also observed that the presence of fines in the sand makes the sand more 

dilative and hence the strength of sand at 50% silt content is less than that of the sand at the 

same dry density.   
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CHAPTER 3.  MEASUREMENT OF PORE WATER PRESSURE GENERATION  

AT SPECIMEN MID-HEIGHT  

Conventionally pore water pressure is measured at the ends of the sample during any 

undrained triaxial tests. However, there are two methods of measuring the pore water 

pressure developed in the sample: 

Method 1: Run the test at a constant small strain rate especially in a cohesive soil 

sample and measure the pore water pressure hence developed at the ends of the soil 

sample. 

Method 2: Place a localized pressure measuring device (pressure transducer) in an 

anticipated failure zone or at any point in which PWP measurement is desired. (Baldi, 

Hight, and Thomas 1988; Cherrill, 1990; Hight 1982) 

The conventional approach of choosing method 1 arises from the fact that it is easy 

and reliable and, in most cases, gives optimum information expected from a triaxial test. The 

second method requires more skill and is used only in cases where extensive information 

regarding PWP generated within the soil samples are needed. It is also important to have a 

fast measuring device that is sensitive enough to measure a small change in the pressure 

developed within the sample. The use of transducers to measure both the pressure at both 

ends and at mid-height gives extremely valuable information with respect to controlling the 

rate of consolidation, strain rates necessary for shearing, etc. The success of a transducer 

relies on its capability in measuring pore water pressure at a high rate and with accuracy and 

with minimum interference with the sample. Figure 10 illustrates the miniature probe design 

as used by Hight (1982) in one of the first tests carried out using a piezometer probe (Baldi, 

Hight, and Thomas, 1988; Fourie and Xiaobi, 1991; Hight 1982). 
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Source: Hight (1982) 

 

Figure 10. Miniature mid-height piezometer probe 

There are many advantages of using a probe along the length of the soil sample. 

According to Hight (1982), it is advantageous to use a probe since it saves time as it reduces 

the time for the pore pressure to achieve equilibrium while performing consolidation in 

cohesive soil samples. It improves the data interpreted with respect to PWP measurement in 

cyclic as well as monotonic tests. This could help in a better understanding of PWP flow in 

soils in case of cyclic loading which helps further understanding of the liquefaction 

phenomenon. The combination of pore pressure measurement at the mid-height and also at 

the ends is advantageous during stress path testing as the rate of stress change can be 

controlled to maintain an acceptable low gradient of PWP in the sample during drained stress 
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path testing. In addition, consolidation can be carried out at any PWP gradient to simulate 

field conditions.  

One particular problem with measuring pore water pressure at the ends of the sample 

is end restraints which have a considerable effect on the measurement. End restraints are 

caused by the rough ends at the end platens and are a recognized problem for a long time. 

The use of lubricated platens has been in practice since and despite it they are not 100% 

smooth and lead to discrepancies in the data. Errors usually occur while measuring the PWP 

because it is conventionally measured at the end of the sample which is not representative of 

the PWP throughout the specimen. In an undrained test, the excess pore water pressure is not 

allowed to dissipate and no flow of water is allowed from the specimen or towards it. Hence 

the pore pressure generated is non-uniform and depends on the rate of loading especially 

when dealing with fine cohesive materials with low hydraulic conductivity. The equalization 

of pressure takes place by the flow of water at high PWP areas to low PWP areas and a 

complete equalization only takes place when the test is allowed to run at a very slow rate. 

There has, however, not been a lot of research done on pore pressure developed within a 

triaxial specimen and the ones available are the ones carried on an undrained unconsolidated 

triaxial test.  

 Fourie and Xiaobi (1991) used a mid-height pressure probe while measuring the 

effects of end restrains on pore water pressure measurement within the sample in a UU test. 

The authors observed that the testing rate did not affect the stress-strain curve while working 

with high plasticity clays. They also observed that the PWP at the base of the probe was 50% 

higher than the midpoint in an isotopically consolidated clay and the magnitude of the 

difference was dependent on the rate of testing. The authors stated that the effective stress-
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strain parameters could be obtained from undrained testing provided the piezometer probe is 

placed at the midpoint. 
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CHAPTER 4.  EXPERIMENTAL PLAN 

4.1 Material Properties 

Kaolinite: The material used in this research was pulverized EPK kaolin clay from 

Edgar MineralsTM. The chemical analysis of kaolin clay is provided in Table1, which 

describes the chemical, whereas Table 2 describes the ceramic properties of the material 

(Maher et al. 2018). Kaolin is extremely plastic, in which the LL = 53 and PL =35. Figure 

11–14 provide sieve analyses and semi-logarithmic plots of water and silt content. 

Table 1. Chemical Components of Kaolin Clay Fines 

Mineral type Percentage Mineral type Percentage 

SiO2     45.73% CaO  0.18 

Al203 37.36 MgO    0.098 

Fe2O3   0.79 Na2O    0.059 

TiO2   0.37 K20  0.33 

P205    0.236 LOI 13.91 

 

Table 2. Physical and Ceramic Properties of EPK Kaolin Clay 

Median Particle size (microns) 1.36 

Specific surface areas (m2/g) 28.52 

Mineral content (X-Ray Diffraction) Kaolinite (Al2O3,2SiO2,2H2O)-97% 

Specific Surface Area (m2/g) 28.52 
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Figure 11. Sieve analysis of Kaolin clay 

 

 

 

Figure 12. Semi logarithmic plot of water content vs the number of blows 

with N=25 indicated for Kaolin clay 
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Figure 13. Sieve analysis of Loess silt 

 

 

Figure 14. Semi logarithmic plot of water content vs the number of blows,  

with N = 25 indicated for Loess silt 
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Loess: Loess soil was used to carry out tests on silty sand. The loess soil used in this 

test was collected from the Loess Hill areas in Monoma County, Iowa. Approximately 82% 

of the soil has fine particles (< 0.075mm), with other sand-like particles. The soil is brown in 

color and silty in nature. The specific gravity of the soil is 2.74 with a Liquid Limit (LL) = 32 

and Plasticity Index (PI) = 6. The soil was classified as (ML) according to USCS unified soil 

classification system. Mahedi, Bora, and Dayioglu (2019). 

4. 2. Test Apparatus and Software 

After a brief review of the advantages and limitations of triaxial testing on cylindrical 

specimens, the following topics are discussed: 

 methods of measurement, including axial load, pore pressure, and axial displacement, 

with special emphasis given to axial deformation measurements; 

 methods of preparing and installing specimens;  

 methods of specimen saturation;  

 consolidated undrained testing; and 

 Measurement of pore water pressure the mid-height of the specimen. 

4.2.1. Triaxial test device  

Geotac Sigma1 System (Figure 15) was used for carrying out tests on the 

cohesionless soils. The system consists of a load frame used to apply external loading with 

the help of a loading jack. The samples tested in the test were 1.4" * 4" dimensions for 

testing the mid-height pore water pressure whereas 2.8’* 5.6” specimens were used to 

conduct tests on the effect of fines. Drainage is provided from both top and bottom platens in 

the triaxial cylindrical cell using water and a pressure panel by Trautwein. 
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Figure 15. Geotac Monotonic Triaxial testing setup 

Conventional triaxial tests were conducted due to the relative ability with respect to 

other tests in measuring the principal stresses in all dimensions. Backpressure was provided 

to the system using the pressure panel with the pressure values depending on the tests and the 

type of sample. The top and the bottom platens were lubricated using a silicone gel in order 

to reduce the non-uniformity of stresses within the specimen caused due to end restrains. The 

best solution to the problem of measuring the pore water pressure within the length of the 
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sample was solved by modifying the top cap of the triaxial device. Special modifications 

were made in the top cap of the triaxial cylindrical cell for this particular research in order to 

carry out this particular study (Figure 16). The top cap was drilled with plastic caps with 

openings to pass 1/4" diameter tubes to facilitate the measurement of PWP within the soil 

chamber. These were later connected to the pressure transducers placed above the top cap. 

Special care was taken to prevent leakage through these openings so that the pressure within 

the chamber is maintained during the tests. Pressure transducers were connected with the 

system to correctly measure the PWP within the soil at both the top and bottom of the 

chamber and to measure the cell pressure within the chamber. 

 

 

Source: http://www.geotac.com/products/truepath/  

Figure 16. Systematic view of Geotac Setup Digital Image 

 

http://www.geotac.com/products/truepath/
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4.3. Twin Towers and Mid-height Porewater Pressure Measurement Device 

It is important to make sure that the needle connected to the membrane at the mid-

height does not get disturbed during sample deformation. Hence it was necessary to provide 

support for the needle hanging freely from the tube connected to the top cap as shown in 

Figure 17–19). This was carried out by 3-D printing a mold which can be fixed at the bottom 

cap without affecting the water tubes connected to the top pedestal (Figure 17). The mold has 

circular holes at a specific height for the basic to pass through and stay in place. The heights 

of the opening of the holes were such that the needle can be inserted at mid-height, top, 

bottom or 1/3rd, the length from the top or bottom of the sample. Tests were done to make 

sure the needle does not affect the outcome of the tests. During the initial tests where the 

needles had directly penetrated within the sample without the twin towers, it was observed 

that the needles were disturbed during the sample preparation process which led to punctures 

in the membrane (Fourie and Xiaobi, 1991). This led to the influx of cell pressure within the 

sample which led to the failure of the samples being created at it could not keep the 2 

separate pressure systems apart. 

As shown in Figure 17, the twin towers provide stability to the needles which do not 

budge during the sample preparation process and hence produce the required stability by 

preventing leakages and thus reduce the risk of sample failures. The design consists of a 

circular ring base with 2 towers based on its upper face of the ring. The towers consist of 3 

circular openings each, with the dimensions equal to the dimensions of the crown of the 

needles. This ensures the needles are placed intact. The openings are placed at positions 

equal to the 1/4th, 1/2 and 3/4th the length of the sample on one side and 1/3rd, 1/2, and 2/3rd 

the length of the sample on the other. The lower base of the sample consists of an  
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Figure 17. Twin Towers 

 

arrangement for attachment to the base of the triaxial base for further stability to prevent any 

angular displacement (Figure 18 and 19). The design was 3D printed using the Iowa State 

University’s CTLT Department at a very minute monitory cost. 

DATA acquisition system: A USB directly powered data acquisition system named 

OM_DAQ_2400 by OMEGA Engineering was used to acquire data from the pressure 

transducer. The system has a 16bit single-ended analog input used to collect the data (Figure 

21). 
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Figure 18. Setup for measuring mid-height PWP 
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Figure 19. Setup for insertion of the needle at mid-height 
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Figure 20. Test setup for measuring mid-height PWP 

 

4.4. Internal Pore Pressure Measuring System  

Pressure transducer: PX 119-100AI pressure transducer by Omega Engineering was 

used to measure the pressure at the center of the soil sample (Figure 21). It is a piezo-

resistive transducer used with an accuracy of 0.5%. The PX119 pressure transmitter series 

is ideally suited for material handling, industrial and mobile equipment applications where 

space constraints require a small body size. 
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Figure 21. Data acquisition system and pressure transducer 
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CHAPTER 5.  TESTING PROCEDURE 

5.1. Test Preparation for Cohesionless Soils 

Testing of homogenous soil samples under uniform stresses or strain is required for 

the study of many fundamental properties of soils along with analysis of their behavior under 

various boundary conditions. It is of vital importance to be able to produce several 

reconstituted samples having the same soil fabric with the desired relative density in order to 

be able to carry out multiple tests. The preparation techniques used for the cohesionless 

samples greatly affect the properties of the cohesionless soil sample. Special care needs to be 

taken for specimen preparation so that the properties of the soil achieved at the end of the 

tests do not have any errors be it mechanical or human. Every step of the process needs to be 

carried out as precisely as possible. However, in the case of cohesionless soils like sand, it is 

very difficult to achieve non-disturbed samples in-situ. Therefore, in this study reconstituted 

sand samples were used. The sands tested were Ottawa sands which were mixed with fines of 

either clay or silt. Pure sand samples were prepared using the air pluviation method where 

changing the height of the drop leads to denser materials. However, when dealing with sand 

with fines, wet tamping was used in order to achieve a thorough mix to prevent any 

segregation during deposition. In order to prepare the soil sample, the sand was mixed with 

the desired number and type of fines. 

5.2. Influence and Comparison of Different Specimen Reconstitution Methods 

There are only two ways of obtaining soil samples required for laboratory testing. 

One technique is to obtain an in-situ undisturbed sample from the ground in thin-walled tubes 

with proper sealing on both ends with paraffin wax and then later carefully extruded in the 

lab. These samples are later trimmed to the desired size and various tests are conducted on it 
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to understand its behavior and obtain the engineering parameters necessary. However, this is 

a laborious and expensive technique and cannot be used to carry a myriad of tests for 

research purposes on a regular basis. It is also difficult to obtain undisturbed samples in cases 

of granular soils such as sand as they cannot be sampled without disturbance unless they are 

frozen in-situ (using liquid nitrogen), cored and then later shaped in suitable specimen size 

all in the frozen condition using a lathe and later tested after it has been thawed within the 

latex membrane. This technique also required a cold room and freezing temperatures. 

Past research has indicated that the technique used for sample preparation has a 

strong influence on the stress-strain response and the mechanical behavior of the specimen 

(Carraro et al., 2009; Murthy et al., 2007). However, experimental data related to the 

depositional effect has been observed to be very limited as most of the research was focused 

more on clean sands. Efforts can be made so that the reconstitution technique simulates the 

depositional process of natural soils, with the soil fabric being similar to natural soil deposits 

of similar nature. However, almost all of the processes do not accurately depict the natural 

soils, and more research needs to be carried out to make sure the reconstitution process 

depicts the natural soil deposits. Uniform and repeatable clay specimens can be obtained by 

trimming the clay deposits naturally obtained from a sampler. However, this is not possible 

in case of sand samples except by using frozen samples which is an impractical and 

expensive process. The goal in each of the reconstituting technique is to achieve soils 

samples which simulate the same fabric, void ratio as that of naturally occurring in–situ 

depositional process. These techniques become more important in cases of fines content as a 

uniform mixture of the host sand and the fines are the key and segregation are prevented as it 

could lead to incorrect results. 



www.manaraa.com

46 
 

 
 

The main goal in using reconstituting soils is to make sure that the technique is 

repeatable and the desired average density throughout the length of the sample is acquired. 

The most commonly used techniques are Wet Tamping (WT), Air Pluviation (AP) and slurry 

deposition (SD), water sedimentation (WS) techniques. All of these techniques have their 

own advantages, however, none of the techniques truly create a sample simulating naturally 

occurring soils.  

Figure 22 provides an illustration of different soil reconstitution methods. In the work 

carried out by Yamamuro and Wood (2004), wet deposition methods appeared to indicate a 

more volumetrically dilatant or stable response, while dry methods appeared to exhibit a 

more contractive or unstable behavior. It was also observed that the effects were more 

pronounced at lower densities than higher densities. This is probably due to the fact 

according to the authors that to achieve a high density in a specimen mold, a fairly high 

amount of energy must be applied to the soil as it is deposited. Thus, the effect of the 

depositional method is negated, because the resulting soil fabric is probably very similar. 

 

Source: Zlatovic and Ishahara (2013) 

Figure 22. Comparison of different specimen reconstitution methods 
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5.2.1. Air Pluviation (AP) technique 

In the air pluviation technique, dry soil is pluviated through a fixed height. The idea 

being that with an increase in height, the velocity of the soil grains is used to achieve 

densification and hence as the drop height increases the void ratio increases as well and 

densification can be achieved. The pluviation of sand appears to create samples that are 

closest to simulate the sedimentation of depositional processes found in nature as the main 

factors controlling the deposition of sands are wind or water. The void ratio and the structure 

of the sand fabric are the factors determining the behavior of sands (Lade, 2016).  

Air pluviation samples are used to create samples right within the membrane jacket 

by sand raining. The setup might include a container with a shutter at the bottom, a diffuser 

screen, a long tube easily made with cardboard with the inside diameter equal to the split 

mold which is covered with a latex membrane. The tube is placed on the split mold and the 

sand is rained on the bottom of the split mold containing a saturated porous stoned and filter 

paper. A variation in height is used to achieve sands of different densities. In order to achieve 

the loosest of the samples, specifically for liquefaction tests and to achieve samples with low 

relative density. Terminal velocity is reached at a very small drop height, and homogeneous 

samples of the same initial density tend to be formed by pluviation of uniform sand in water. 

Different sand densities are achieved by changing the rate of drop of sand poured in the tube. 

This can also be achieved by changing the number of holes and the size of the holes in the 

shutter and thus achieve a controlled deposition rate. However, the rate of drop and the 

relative density thus achieved along with the drop height changes for every sand and also on 

the value of the desired void ratio, hence it should be noted that experiments need to be 

carried out for each individual sand Lade (2016). Preparation of triaxial sand samples by 
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pluviation in water is also recommended by some researchers as it results in initially 

saturated specimens, and homogeneous samples of desired densities can be replicated 

without difficulty (Y. Vaid and Negussey 1988; Yamamuro and Wood, 2004).  

5.2.2. Dry Funnel Deposition (DFD) 

Specimens prepared by this technique are initially formed by placing sand or sand 

and silt mixture in a funnel and placing the spout of the funnel to the bottom of the split 

mold. The spout of the funnel is raised slowly, and the soil is allowed to deposit along with 

the height of the mold in a symmetric manner. To achieve higher densities of soil, the funnel 

is raised at a greater height quickly. In order to achieve higher densities, the split mold is 

tapped gently from all sides evenly at various intervals.  Yamamuro and Wood (2004) state 

that air pluviation and dry funnel deposition method can be used for making sand with silt 

mixtures, but the tests carried out during this research found particle segregation a 

reoccurring concern in case of sand and fines specimens. The AP would be a recommended 

technique for making reconstituted specimens of pure sands Wood, Yamamuro and Lade, 

(2008). 

5.2.3. Moist tamping 

Moist tamping is used to prepare reconstituted samples when needed to test on 

liquefaction. Loose samples of sand are possible especially due to the capillary effects 

between grains and are mostly observed to have more contractive stress-strain behavior 

which may unjustly lead to a liquefaction behavior (Vaid et al., 1999). The technique used 

for carrying out moist tamping has evolved with passing years. A known weight/volume of 

soil is mixed with a known weight/volume of water and mixed thoroughly and placed over 

several layers. In the test consisting of fines and sand mixture moist tamping was used in 5 
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layers. Each layer was tamped using a tamper of a known weight and equal blows were 

applied so that a uniform density throughout the specimen could be achieved. Casagrande 

(1936) noticed that sometimes moist tamped samples create bulked, honeycombed structures 

that liquefy upon saturation. During these tests a few samples, similar problems were faced 

for a few samples, but the technique was found satisfactory to the needs required for the tests 

especially uniformity and consistency in achieving repeatable samples quickly. It has been 

argued that the under-compaction technique promotes the reconstitution of uniform 

specimens but direct evidence showing the void ratio profile over the specimen height has 

rarely been presented. The technique is known however to create specimens with a non-

uniformity in their void ratio throughout the length with variation ranging up to 10% in either 

direction (Vaid, Sivathayalan and Stedman, 1999). However, this technique was used for 

preparing the samples of sand and fines mix mostly to prevent segregation of the two 

different materials and the mixture obtained through it was found to be more uniform and 

consistent as compared to any other technique. 

5.2.4. Slurry deposition 

To ensure full saturation, the sand sample is boiled the night before testing, similar to 

the WS technique. Rather than depositing the soil directly into the split mold, it was first 

placed into a mixing container, where it was thoroughly mixed before being deposited into 

the mold. The soil and mixing container is inserted into the mold and then the mixing 

container is extracted leaving the soil in place. According to Vaid et al. (1988), the slurry 

deposition method has the following advantages: 

1. The method produces loose to dense samples observed commonly among the density 

range of in-situ sands. 
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2. The sample saturation is easier as compared to others. 

3. The fabric and void ratio of the samples are more or less uniform throughout. 

4. The particle segregation is minimum regardless of gradation or fines content. 

5. The method is closest to simulating the natural ways of deposition of soils and easy to 

duplicate. 

5.2.5. Undercompaction 

Undercompaction is the soil compaction technique developed by Yamamuro and 

Lade (1998) in order to create soil samples which do not segregate when a soil mixture 

containing fines exist. It is claimed to achieve soil samples with uniform relative densities. 

The technique was developed for soil samples to undergo cyclic triaxial tests specifically for 

liquefaction study. The technique was different from moist tamping in one particular aspect 

that the tamping of the subsequent upper layer does not further compact the layers below it. 

Thus, each layer is typically compacted in lower densities thus overcoming the non-

uniformity of compaction caused due to tamping processed where the density of the lower 

material increases due to compaction blows at the upper layers. 

5.3. Sample Installation 

 Before the commencement of the consolidated undrained test, the membrane has 

placed the sides of the triaxial cylinder was lubricated with silicone gel to make sure the cell 

pressure and backpressure do not get mixed. The top and bottom platen were lubricated with 

sufficient Vaseline or silicone grease to prevent friction between the membrane and the 

platens. This friction leads to non-uniform distribution of stresses in the soil samples as it 

introduces non-desired stresses and affects the angle at which resultant principal stress is 

applied. Such effect due to the friction is called as end restrains. It is important to make sure 
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that the stress distribution throughout the system is uniform so that effective stresses across 

the material being tested will be reasonably uniform and meaningful test results can be 

obtained.  A vacuum pump is activated to make sure the membrane achieves the entire 

dimensions of the split mold due to suction. The porous stoned completely saturated along 

with wetted filter paper is introduced at the bottom platen. Soil is later introduced in the 

system according to the method of sample preparation chosen. Once the soil is completely 

filled, another saturated porous stone and filter paper is introduced at top of the soil layer and 

a lubricated top platen is placed.  

In order to measure the pore water pressure inside the sample at various heights, 1.4” 

long hollow needles are penetrated within the samples at the desired heights from the outside 

of the membrane. These needles were punctured in the soil specimen at any desired height at 

which the readings need to be made. To prevent leakage through the puncture the needles at 

its tail were connected to a ¼" tube which was connected to the modified opening made to 

the top cap of the system. It should be noted that all the efforts were made so that cell 

pressure does not influx in the sample as that would lead to the failure of the test before any 

external axial load is applied. However, when the samples were initially made and tests were 

run, it was observed that the process of sample preparation and placement of the top cap to 

the cylindrical triaxial chamber caused disturbance and displacement of the needles which 

led to the puncture in the membrane to increase in size thus leading to the soil sample to be 

inundated with water in the pressure chamber thus creating leakage problems. Thus, it was 

necessary to make sure that the needles remain undisturbed when the triaxial chamber is 

prepared and the top cap is placed.  The initial runs showed that the needles caused leaks in 

the membrane due to constant disturbance created while setting up the sample. Thus, 
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modifications were made in the preparation of the samples. A special base was designed and 

3 D printed to make sure the needles were not disturbed when the triaxial chamber was put in 

place. The design of the base is provided in the twin tower section. The holes keep the 

needles in place and caused minimum disturbance thus reducing leakage problems 

considerably. These membrane punctures created by the needles are covered with watertight 

tape to prevent the water from entering the soil through the gap created. These needles are 

further connected to tubes that come out from the top cap of the triaxial cell with the help of 

specially made grooves that are sealed with water sealant and O-rings in order to maintain 

the cell pressure and prevent leakage of water and pressure. 

The pore pressure and cell pressure transducers were calibrated to make sure accurate 

values have been obtained. The cell pressure is first introduced as a seating pressure to ensure 

that there is no leakage within the soil membrane. And the cell is filled with water as a 

medium for applying the sigma 3 on the soil sample. The soil is back pressured using the 

flushing method where Carbon Dioxide gas is passed through the soil sample to get rid of the 

air trapped between the voids The soil is then back pressured with water to achieve 

saturation, In many cases, the air is flushed out by passing carbon dioxide gas through the 

system and then passing the de-aired water through it. This is a better procedure as carbon 

dioxide is lighter than air and is easily flushed out from the system. The water in the tank is 

de-aired for at least a period of 24 hours to prevent the influx of extra gases from the outside. 

Another added advantage is the prevention of the possibility of chemical reactions that could 

occur in the soils which might affect the results. This is especially important for long-term 

tests in order to keep the influence of the pore fluid purely mechanical. A small pressure 

gradient is applied between the bottom (inlet) and the top pore pressure circuit (outlet) by 
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leaving the exit valve open. The backpressure is typically increased in several stages on both 

specimen faces and is maintained for several hours to days. The confining pressure is 

increased simultaneously in such a way as to maintain the effective stress that has been 

established during the flushing phase. 

5.4. Saturation 

The soil was saturated using the Trautwein pressure panel to achieve a B-value of 

0.95 and was usually achieved at around 30-35 psi (Figure 23). A B-value test was run on the 

sample to make sure that the change in pore water pressure on a change of at least 5 psi of 

cell pressure is 0.95 times the value of cell pressure. 

B =  
 𝛥 𝑢

 𝛥 𝜎3
 (7) 

where: 

Δ u = Change in the PWP of the specimen as a result of cell pressure change, and 

Δ σ3 = Change in cell pressure. 

Once the saturation of the soil was completed the soil would later be consolidated by opening 

he valves and allowing the soil to consolidate for up to 30 minutes minimum as 

recommended by ASTM D4767-11. 
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Figure 23. Trautwein Pressure Panel 
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CHAPTER 6.  TEST RESULTS AND DISCUSSION 

6.1. Behavior of Soils with the Addition of Silty Fines 

6.1.1. Responses at 15-18% relative density 

The relative density of the soils was kept nearly constant throughout the tests. At a 

constant relative density, the fines were added to the soils, which led to an increase in their 

skeletal void ratio. The soils were tested at 15%. Results are provided in Table 3. 

Table 3. Loose Sand with the Addition of Silty Fines 

Sample 
Relative 

Density 
Type of Fine % Fines esk 

Initial Confining 

Pressure 

29 15 None   0 0.78 50 

70 15 Loess 10 0.94 50 

53 18 Loess 20 1.50 50 

58 14 Loess 30 1.21 50 

 

For the first series of tests loose sands, Ottawa sands were mixed with silt fines at 0%, 

10%, 20%, and 30%. The results for deviator stress vs strain % of 4 undrained monotonic 

triaxial tests are shown in Figure 24. The soils have been tested at a constant relative density 

of approximately 15%. The purpose was to verify the effect of fines content at moderately 

high confining stress of p’ = 50 psi or (345 KPa) on the behavior of loose sands. The clean 

sand exhibited a highly dilative response when sheared as it usually expected from loose 

sands under shear Holtz (1981). The soil showed a dilative behavior also called flow type by 

Ishihara (1993) where the soil behavior is unstable where it achieves a maximum shear 

strength then undergoes dilation on achieving optimum void ratio and the strength declines 

steadily. However, when the sand was mixed with silts it showed a more rapid hardening  
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Figure 24. Deviator Stress vs Axial Strain (%) for loose sand with silty fines 

behavior where the soil showed signs of contraction. As the number of silt fines increased to 

10% rapid hardening response was observed within the soil and without affecting the 

stability of the soil. However, as the fines content was increased within the host sand, the soil 

mixture underwent contraction with the reduction in the residual strength observed. It was 

observed that at fines content up to 10%, the soil silt mixture showed a rapid reduction in the 

behavior with respect to the change in the dilation to undergo contraction without the loss in 

hardening properties of the soil. Similar behavior was observed for the soils with fines 

content up to 20%. For the soil with 30% fines, the relative density or the void ratio of the 

host sand before the introduction of the fines was rescued to 5%. For the same amount of 

fines but with a lower void ratio or relative density and at the same confining pressure of 50 

psi, the soils were observed to change their behavior with the increase in fines. The dilation 

tendency is steadily reduced and the soil starts to undergo contraction. This phenomenon 
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occurs due to the increase in the silts in the voids and they participate in the distribution of 

loads for the sand grains. 

The p-q’ curve (Figure 25) revealed that the sands with the addition of silts undergo 

an increase in its tendency to contract and try to achieve a temporary instability phase from 

temporary liquefaction. It was observed that the mean effective stress at which the soil 

achieves temporary increases thus making it more stable with and provided resistance 

towards possible liquefaction. The phase transformation stage is the point at which the curve 

achieves its minima after which it undergoes an increase in deviator stress or a quasi-steady 

state is achieved at a higher mean effective stress with an increase of the fines content. This 

follows the observation of the behavior of excess pore water pressure generation within the 

soils during its shear stage. 

 

Figure 25. Effective stress paths (p’ vs q) for loose sands with silty fines 
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With the increase in fines contents the behavior, it was also observed that the increase 

in the silt content in the sand increased the generation of excess pore water pressure buildup 

within the soil specimen changes its behavior from a more loose soil towards medium dense 

sand. As shown in Figure 26, the excess PWP generated curves behave like loose sand in the 

absence of silts. The increase in the silt content and in the case of loose sands the PWP 

increased to a maximum and then kept steady state as the soil achieved a steady state. The 

increase PWP curves on increasing the silt content in the soil tend to behave similarly to 

medium and dense sands.  

 

Figure 26. Excess PWP vs Strain (%) for loose sands with silty fines 

Why does the silty sand mix behave differently than pure sands? When clean sand is 

mixed with increasing amounts of non-plastic fines, the minimum, and maximum void ratios, 

as well as the range of void ratios, change, and highly unstable and compressible particle 

structures are formed when gently deposited into loose configurations. The void spaces 

between the larger grains are relatively unoccupied, and the larger grains, which will make 
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up the load-bearing skeleton, are held slightly apart by smaller silt particles. On the 

application of stress, these silt particles are forced into the void spaces (Figure 27). This leads 

to a metastable structure formation which was hypothesized by Terzaghi. It was also 

observed that the increase in the fines increases the angle of the steady-state line without 

affecting the point of phase transformation.  

 

Figure 27. Stress Ratio vs Axial Strain (%) for loose sands with silty fines 

6.1.2. Response at 30-60% relative density 

Tests for this series were executed on medium dense to dense sands (Table 4). 

Medium dense Ottawa sands were mixed with silt fines at 0%, 18%, 28%, and 40%, whereas 

dense sands were mixed with 12%, 28%, and 40%. The results for deviator stress vs strain % 

of 7 undrained monotonic triaxial tests are shown in Figure 28. The soils were tested at 

different relative densities approximately ranging from 30% to 60% and variation of behavior 

in the addition of fines was observed. The purpose was to verify the effect of fines content at 

moderately high confining stress of p’ = 50 psi or (345 KPa) on the behavior of sands. 
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Table 4. Medium Dense and Dense Sand 

Sample 
Relative 

Density 
Type of Fine 

% of Fines 

(fc)  
esk 

Initial Confining 

Pressure   

33 30 None 0   0.64 50 

57 60 Silty 12   1.07 50 

84 30 Silty 18 1.3 50 

86 30 Silty 28 1.1 50 

88 60 Silty 30   1.48 50 

98 30 Silty 40   0.91 50 

61 60 Silty 35 1.4 50 

 

 

 

Figure 28. Deviator Stress vs Axial Strain (%) for medium dense  

 and dense sands with silty fines 

 

It was observed that the sand revealed a stable behavior of that of medium dense sand 

when sheared (Figure 29). The sand undergoes dilative behavior and achieves maximum 

shear strength at a 1.3% strain rate where it undergoes instability up to a particular mean 

effective stress, and then stabilizes which it traditionally shows in a triaxial test under a  
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Figure 29. Effective stress paths (p’ vs q) for medium dense sands with silty fines 

 

medium consolidation pressure in undrained conditions. As seen in the tests for loose sands 

in section 6.1.1., the sand on the addition of 18% fines undergoes a contractive behavior and 

becomes more stable.  

The excess pore water pressure which in the case of sand shown in Figure 30 

decreases with the increase in silt content. However, with the addition of additional silt of 

28%, dilation is observed as similar to loose sand with 30% silt content. The pore water 

pressure increases more steadily and the sands become less stable. As the silt content in the 

sands is further increased up to 40%, the sand shows dilative behavior again as was observed  
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Figure 30. Excess PWP vs Axial Strain (%) for medium dense sands with silty fines 

 

with loose sand. Similar behavior was observed for dense sands. In addition to 12% silt fines, 

the sand shows contractive behavior with a loss in pore water pressure and an increase in its 

stability. As the silt content increases. However, the increase of fines content reduces the rate 

of generation of negative PWP. As the silt content of the soil increases further, the excess 

PWP increases and stays positive throughout the test. The addition of fines into the sand 

increases the dilative dilatant in nature. Therefore, the relative density of sand on the addition 

of fines is an important factor determining its behavior. At a particular stage where the fines 

achieve the threshold limit, the fines start to dominate the behavior of the sand with silt 

mixture. The silt fines no longer fill only the voids but are responsible for the distribution of 

loads, even between the sand particle, thus explaining the change in behavior of the sands on 

the addition of fines content. 
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6.2. Behavior after Addition of Plastic Fines 

6.2.1. Response at 12% relative density 

For this series of tests on loose sands, Ottawa sands were mixed with kaolin fines at 

0%, 5%, 10%, 13%, 20%, 24%, and 31% (Table 5). The results for deviator stress vs strain 

(%) of 7 undrained monotonic triaxial tests are shown in Figure 31. The soils have been 

tested at a constant relative density of approximately 12% and pure sand at the relative 

density of 25%. The purpose was to verify the effect of fines content at moderately high 

confining stress of p’ = 50 psi or (345 KPa) on the behavior of sands. 

Table 5. Loose Sand Samples with Plastic Fines 

Sample Relative density Type of fine % of Fines 

(fc) 

esk Initial Confining 

Pressure 

42 25 Plastic 5 0.86 50 

66 12 Plastic 13 1.09 50 

69 10 Plastic 20 1.04 50 

65 10 None 0 0.78 50 

74 12 Plastic 24 1.3 50 

78 12 Plastic 31 1.58 50 

81 12 Plastic 10 0.99 50 

 

As shown in Figure 31, when the clean sand is sheared the sand shows a strain-

hardening behavior where the shear stress increases with the increase in strain up to a 

particular point after which it achieves a steady state. This behavior of the sand is called the 

non-flow type behavior as defined by (Ishihara 1993) where the sand undergoes dilation. It 

can also be seen from the excess PWP vs strain % curve Figure 32 that the PWP in  
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Figure 31. Deviator Stress vs Axial Strain (%) for loose sands with Kaolin fines 

 

 

Figure 32. Excess PWP vs Axial Strain (%) with loose sands with plastic fines 

 

the soil undergoes rapid increase and then a decrease after which the PWP becomes negative. 

The sand under such condition is not completely stable and undergoes a phase change at a 

relatively lower mean effective stress as shown in Figure 33. The sand is confined at a 

constant initial confining pressure of 50 psi then sheared. The sand is then  
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Figure 33. Effective stress paths (p’ vs q) for loose sands with plastic fines 

 

introduced with plastic fines up to 5% and sheared under the same conditions. The 

introduction of the plastic fines in such a small amount does not affect the behavior of the 

soil too much.  

The behavior of the pore water pressure can also be seen to behave much like the pure 

sand on the addition of such small quantities of fines; however, the shear strength of the soil 

is higher than that of pure sand due to the higher relative density. Past studies have observed 

that the presence of plastic fines (Georgiannou et al., 1990; Ni et al., 2004) in the sand does 

not help the strength of the soil but mostly decreases it instead. In sand, the presence of 

plastic fines present in between the coarse grains encourages rolling and due to the size 

disparity undergo compression. Hence, the fines present between the voids no longer act as 

voids but act worse than voids. That is, they affect the strength of the soil negatively and lead 

to a decrease in the shear strength of the soils. The stability of the soil from Figure 33 does 

not change and the soil phase transformation point moves only very slightly. 
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With the addition of 10% fines to the sample with the same relative density, the soils 

start behaving less dilative and more contractive. The PWP of the soil increases and is no 

longer negative while the soil shows more contractive behavior. The shear strength of the soil 

is considerably lower than that of the pure host sand at similar void ratio/ relative density. 

The pore water pressure also increases with the increase of the fines content. It can be noted 

that the presence of plastic fines in the voids prevents the easy dissipation of pressure 

between the voids and hence leads to an increase in the pore water pressure.  

This further leads to the contractive behavior of the soil where the fines undergo 

contractive behavior due to the plastic nature of the kaolin fines which prevent them from 

dilating. The platey shape of kaolin fines, as opposed to the rotund shape of the loess fines, 

make it easier for them to adjust their position and get out of the force-carrying skeleton in 

clayey sand. With the addition of both 20% and 24 % fines, it can be seen that the behavior 

of the soil behaves similarly; however, the maximum shear strength of the soil decreases on 

further addition fines. The mean effective stress at which phase transformation occurs 

increases for the 10%, 20% and 24% fines with the addition of fines (Figure 34). The 

instability behavior of the soil decreases and its resistance towards liquefaction potential 

increases. As shown in Figure 33, the excess PWP behavior of the soil increases drastically 

till up to 1.5% strain rate and then decreases as soil reaches a steady state. 

As shown in Figure 31, for soil samples with the addition of both 24% and 30% sand,  

the soils have comparatively lower maximum shear strength and they achieve a contractive 

behavior with respect to the sands. Figure 34 indicates they have achieved a stable stress 

path. They do not undergo any phase transformation and have a straight stress path which 

shows that they have a stable behavior when compared to the sands with lower fines. 
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Figure 32. Stress ratio vs strain (%) 

6.2.2. Response at 40-50% relative density 

For this series of tests on loose sands, Ottawa sands were mixed with kaolin fines at 

0%, 8%, 17%, and 30% (Table 6). The results for deviator stress vs strain (%) of 4 undrained 

monotonic triaxial tests are shown in Figure 35. The soils have been tested at a constant 

relative density of between 40-50 %. The purpose was to verify the effect of fines content at 

moderately high confining stress of p’ = 50 psi or (345 KPa) on the behavior of sands. 

Medium sand of 50% relative density was consolidated at 50 psi pressure and 

sheared. The sand shows contractive behavior where the soil undergoes strain-softening 

behavior and where it has a point of highest shear strength after which there is a gradual 

decline in strength. In this case, it can be seen from Figure 36 that the soil shows a very small 

instability behavior but is stable in most cases. With the addition of the plastic fines, the soils 

simply undergo a similar deformation and similar behavior without undergoing any 

instability (Figure 36 – 38). The only difference observed in all the soils after the addition of 
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Table 6. Medium Dense Sand with Kaolin Fines 

Sample 
Relative 

Density 
Type of Fine 

% of Fines 

(fc) 
esk 

Initial Confining 

Pressure 

63 50 Plastic 0 0.64 50 

25 45 Plastic 8 0.82 50 

44 45 Plastic 17 0.70 50 

59 40 Plastic 30 1.25 50 

 

 

 

Figure 33. Deviator Stress (psi) vs Axial Strain (%) for medium dense  

sands with plastic fines 

 

kaolin fines is the gradual decline in the value of maximum shear strength but there is no 

change in their behavior when compared to the pure sand. There is no observation in any 

change to the steady-state line either, and the stability is also retained. Therefore, it can be 

shown that, in the case of medium sands, the presence of kaolin does not affect the stability 

in any way but only affects its strength and does not promote or prevent liquefaction or 

instability.  
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Figure 34. Effective stress paths (p’ vs q) for medium dense sands with plastic fines 

 

 

 

Figure 35. Excess PWP vs Axial Strains (%) for medium dense sands with plastic fines 
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Figure 38. Stress ratio vs axial strain (%) for medium dense sands with plastic fines 

 

6.2.3. Determination of range of threshold fines content of silts in Ottawa sands 

The shear strength of various samples of sand compacted at different relative 

densities of compaction is shown in Figure 39. The natural behavior of the increase in fines 

content to the sand at a constant relative index is shown in the preceding graphs. It can be 

observed that for all the soil samples there is an increase in shear strength in the soils with the 

increase in the fines content. As the amount of fines in the soil increase, the sand matrix 

densifies as the fines replace the voids and the transfer of forces due to interparticle contact 

increase which leads to the increase in the shear strength of the soil sample. This is clearly 

observed in all the samples consolidated at different relative densities at fine content (%) 

equaling 10%. As the fines content increase further, the shear strength of the soil increases 

considerably. At a particular point in the increase of fines to the host sand, however, the soil 

reaches a shear strength and then drops. This is assumed to be the threshold fines content as 

theorized.  
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Figure 36. Fines Content (%) vs Shear Strength (psi) at different relative  

 densities in sand 

At the threshold fines content the fines overcome the voids and participate actively in the 

stress distribution. This causes in case of silt a drop in the shear strength due to slipping 

between the sand grains and the silt fines. It can be observed from the graph that the 

threshold fines content is achieved from 23 % to 35% for dense sands to medium dense 

sands. The loose sands do not show the behavior for fines content up to 35%. 

6.2.4. Confining pressure effect on maximum stress at failure in very loose sands 

For this series of tests on very loose sands, Ottawa sands were mixed with silt fines at 

35% and 40% (Table 7). The results for deviator stress vs strain % of 3 undrained monotonic 

triaxial tests are shown in Figure 40). The soils have been tested at a constant relative density 

of approximately 5% at different confining pressures. The purpose was to verify the effect of 

fines content at different high confining stress in the presence of loose sands and high plastic 

fines of p’ = 50 psi or (345 KPa), 90 psi or (620.5 KPa), 103 psi or (710.1 KPa) on the 

behavior of sands. 
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Table 7. Sand at Various Initial Confining Pressures 

Sample 
Relative 

Density 
Type of Fine 

% of Fines 

(fc)  
esk 

Initial Confining 

Pressure   

45 5 Plastic 35 1.76 50 

47 5 Plastic 35 1.76 90 

49 3 Plastic 40 2.03 103 

 

 

Figure 40. Deviator Stress vs Axial Strain (%) for very loose sands with  

 plastic fines at different confining stress 

Even though it was shown that the increase in the fines content stabilizes the soil and 

prevents its potential to liquefy or stabilize in case of plastic fines, at low relative density the 

soils do undergo instability despite the increase in the initial confining stress. It was proposed 

by Yamamuro and Lade (1998) that an increase in the initial confining stress increases the 

stability of the soil, it is the relative density at which the host sand is confined that determines 

the stability even though in presence of high plastic fines content. For the soils with the 
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increase in the confining pressure, the shear strength at which soil collapses increases along 

with its initial confining pressure. However, the behavior of the soil does not change and it 

shows instability despite the presence of high plastic fines. It can also be seen that for the soil 

with the same relative density and % fines, the phase transformation point or the point at 

which quasi-steady state is observed does not change on the increase in the confining 

pressure. However, with the decrease in the relative density and the increase in the fines 

content in sample 49 is undergoing liquefaction at a lower mean normal stress. As shown in 

Figure 41, the soil undergoes temporary instability in sample 45 and 47 at different initial 

confining stresses and undergo a phase transformation at mean effective stress of 

approximately 35 psi > on the contrary sample 49 despite having a higher fines content and 

initial confining pressure undergoes instability and liquefaction at a lower value of effective 

stress of 5 psi. 

 

Figure 37. Effective stress paths (p’ vs q) for very loose sands with plastic  

 fines at different confining stress 
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6.3. Pore Water Pressure Measurement at the Mid-height of the Sample 

Conventionally PWP is measured at the bottom and top of the soil sample. The pore 

water pressure was measured at the mid-height of the sample and the factors affecting it were 

observed. The test was run on pure sand with two different types of soils, i.e. pure sands and 

sands with plastic fines and the pore water pressure measurement were carried out at two 

ends and compared with each other. The test is run on six different samples the effect of 

relative density, amount of fines were the factors that were compared (Table 8). 

Table 8. Sands with PWP Measured at Two Different Ends 

Sample Type of Soil % of fines Relative density esk R2 

75 Pure Sand 0 30 0.73 0.993 

76 Pure Sand 0 60 0.62 0.9858 

77 Sand with Plastic Fines 20 12 1.23 0.999 

73 Sand with Plastic fines 15 40 0.98 0.835 

68 Sand with Plastic fines 20 40 1.10 0.8463 

67 Sand with Plastic Fines 20 75 0.56 0.328 

 

For this series of tests, six Ottawa sand samples were tested with two pore pressure 

transducers, at the end and at the mid-height of the sample. The samples were made at 

different relative densities and fines at various quantities were added to it. Pure Ottawa sands 

were tested at 30 and 60% relative density whereas, sands with Rd = 12%, 40%, and 75% 

were mixed with kaolin fines at 20% and 15%. PWP vs time graphs for all samples for both 

PWP at the ends and PWP at mid-height are shown in Figure 42 – 58). The values obtained 

were best fitted on a regression line to determine how close the values obtained were to one 

another. Additional results and figures are provided in the Appendix. 



www.manaraa.com

75 
 

 
 

It can be observed that, for the pure sand with a low relative density, the values 

obtained were extremely close to each other since the coefficient of determination was very 

close to 1. With the increase in the relative density for the sand sheared with all the other 

factors kept constant, the value of R2 deviates from 1 although not by a large value. Thus, it 

can be determined that the relative density of sand affects the PWP within the soil however 

not immensely. With the addition of fines, the behavior of the PWP within the soil sample is 

significant. On the addition of 20% fines in the case of loose sand, the regression value is 

considerably close to 1. As the relative density of the sand increases and the number of fines 

is kept constant, it can be seen that the R2 value drops immensely. Thus, as the soil densifies 

and the void spaces between the coarse grains decrease, the fines occupy the space in the 

voids and the porosity of the soil decreases. In addition, the presence of plastic fines makes 

the soil impermeable and the dissipation of pressure between the soil samples takes longer. It 

is theorized that if a similar test is executed at a much higher strain rate, the dissipation of 

PWP within the sample would be non-uniform and would lead to considerably different 

values for both the pressure transducers. For tests carried out at 0.5-0.8%, the time is 

permitted for the dissipation of pressure allowing uniformity throughout the length of the 

sample. For dense soils with 20% fines, as observed in Figure 52, the R2 obtained is 

considerably lower providing significant proof that even within smaller samples, the pore 

pressure generated within the soil specimen is non-uniform. 
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Figure 38.  Deviator Stress (psi) vs Axial Stress % for sample 75 

 

 

Figure 39. Comparison between PWP (psi) at ends and mid-height  

 vs time (min) for sample 75 
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Figure 40. Variation between PWP at ends and mid-height  

 for sample 75 
 

 

 

Figure 41. Deviator Stress (psi) vs Axial Stress % for sample 76  

 with 0% plastic fines 
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Figure 42. Comparison between PWP (psi) at ends and mid-height  

 vs time (min) for sample 76 with 0% plastic fines 

 

 

Figure 43. Variation between PWP at ends and mid-height for  

 sample 76 with 0% plastic fines 
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Figure 44. Deviator Stress (psi) vs Axial Stress % for sample 77  

with 20% plastic fines 

 

 

 

Figure 45. Comparison between PWP (psi) at ends and mid-height 

 vs time (min) for sample 77 with 20% plastic fines 
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Figure 50. Variation between PWP at ends and mid-height for  

 sample 77 with 20% plastic fines 
 

 

Figure 51. Deviator Stress (psi) vs Axial Stress % for sample 73  

 with 15% plastic fines 
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Figure 46. Comparison between PWP (psi) at ends and mid-height  

 vs time (min) for sample 73 with 15% plastic fines 

 

 

Figure 47. Variation between PWP at ends and mid-height for  

 sample 73 with 15% plastic fines 

 



www.manaraa.com

82 
 

 
 

 

Figure 54. Comparison between PWP (psi) at ends and mid-height  

 vs time (min) for sample 73 with 15% plastic fines 
 

 

Figure 48. Variation between PWP at ends and mid-height 
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Figure 49. Deviator Stress (psi) vs Axial Stress (%) for sample 67  

 with 20% plastic fines 
 

 

Figure 50. Comparison between PWP (psi) at ends and mid-height  

 vs time (min) for sample 67 with 20% plastic fines 
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Figure 51. Variation between PWP at ends and mid-height for  

 sample 67 with 20% plastic fines 
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CHAPTER 7.  CONCLUSION 

In this study, the effects of non-plastic and plastic fines were observed on the sands of 

different relative densities. Thevanagayam et al. (2002) proposed three (3) different possible 

arrangements of fines within the sand matrix. As the amount of fines in the sand increases the 

limiting threshold fines content is reached where the fines no longer occupy the voids but 

participate in the loading during shear. The behavior of the sand with fines mixture changes 

upon reaching the threshold fines content was observed in the sand with silt mixture. It was 

also noted that this behavior is dependent on the initial relative density of the host sand and 

the threshold frequency is different for loose, medium dense and dense sands. The effect the 

fines have on the soil does not merely depend on the amount and type of fines but also on the 

initial relative density the sand is compacted within. Sands show a tendency of contraction 

till the limiting threshold fines content is reached and begin dilating as silts content increases 

further. 

The use of skeletal void ratio was used to represent the fabric of the sand and fines 

mixture as opposed to relative density or traditional void ratio. Depending on the relative 

density during compaction, the sand undergoes five behaviors raging from liquefaction for 

very loose sands to stability for medium dense sands and dense sands. This behavior does not 

only depend upon the initial relative density but also on the confining stress during undrained 

shearing. All the tests in this study were carried out at a constant confining stress of 50 psi.  

7.1. Discussion 

 Loose sands undergo dilative behavior during shear and showed a stress hardening 

response with an increase of silt content. These results were confirmed by previous research 

conducted by Pitman, Robertson, and Sego (1994a). As the silt content in the sand increased 
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to 10%, as observed in Figure 24, the loose sand showed a contractive behavior. This 

indicates the fines that are present in the voids participated in the load distribution within the 

sands. With a further increase in the silt content, the sand showed a more rapid contraction 

and resistance towards liquefaction behavior. However, as the sands reached the threshold 

frequency at 30% in case of loose sands, the soil started to undergo dilation due to the fines 

now not just participating but filling the voids and becoming a part of the stress distribution 

in the grain to grain interaction of the sand particles.  

This result was prominently observed in sands with a higher density such as the 

medium to dense sands in Figure 29. For medium to dense sands, the contractive behavior as 

observed for loose sands was also observed at lower fines content up to 12 and 18%, 

respectively. However, with an increase of silt content beyond this point, the sand and silt 

mixture showed dilation behavior. It was highly prominent for dense sands at 35% silt and 

medium dense sand at 40% silt content where the soils are extremely dilatant due to silt 

participation in the shearing stage. These soils also exhibited reversal behavior with respect 

to stability upon reaching the threshold content.  

In the case of plastic fines, however, with the increase of fines resistance was 

observed toward liquefaction. The sands showed a steady decrease in strength but an increase 

in stability. This observation has been consistent for both loose as well as medium dense and 

dense sands. In the case of dense sands, the sand with fines mixture was stable at lower ends 

of the sand with kaoline mixture.  

During the triaxial tests, the pore water pressure measurement was carried out in the 

middle of the specimen as compared to the traditional measurement. These tests were carried 

out on pure sand and sand and plastic fines mixture at various fines content and also on 
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different relative densities. It was observed that as the fines content increases, the distribution 

of the pore water pressure at 2 different points measured at the same time reduces and it no 

longer is the same. This means the pore water pressure diffusion takes a longer time as 

compared to the just sands. It also changes on the increase of relative density of the sands at a 

constant plastic fines content. The diffusion of pore water pressure within the soil sample 

was the highest in the case of dense sands with a higher high amount of plastic fines.  

7.2. Implications 

The study provides a better understanding of the behavior of sands with fines mixture 

and helps better understanding of the soil using steady monotonic loading. The understanding 

that the increase in fine content depending upon the relative density and type of sand can be 

used as an effective means to prevent liquefaction in liquefaction prone areas and areas 

consisting of loose sands. It can be developed as a soil mixing technique for ground 

improvement. 

7.3. Limitations 

This study determined that the behavior of the sand with fines mixture depends upon 

the distribution of fines, the arrangement of particles and the relative density of the mixture. 

Hence, the behavior of the mixture changes with the change in the intrinsic properties of the 

material. Ottawa sand is medium dense sand with rounded particles. The behavior of fine 

sands or very coarse sands might be different since the distribution of fines within them 

change along with the nature of the sand skeleton. It also changes with the size and nature of 

fines, their plasticity index, their behavior when in contact with water. 

In the case of PWP measurement at two (2) ends, the greatest limitations are the time 

and complexity of making the sample and performing the test. Due to the puncture made by 
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the needle in the membrane, the soil is very susceptible to leakage which can lead to failure. 

The presence of the needle also provides resistance to the shear in the soil and does not 

provide an accurate picture for stress distribution within the system. Another limitation is the 

blocking caused in the needle because of the flow of the fines due to pore water pressure 

which might lead to incorrect measurements and require regular maintenance. 

7.4. Future Research  

 The following recommendations are suggested for further study: 

 Study the behavior of sand with fines mixture in static loading to gain a clearer 

understanding of the distribution of fines within the sand skeleton. Further research 

should be conducted to investigate different types of sand with finer or coarser grains 

to analyze the behavior in greater detail. 

 Examine the properties of the fines by changing its PI, sizes and shapes, e.g. flaky or 

rotund fines. 

 Perform cyclic triaxial tests to understand the behavior of sands with fines during 

earthquakes to more fully understand the nature of liquefaction. 

 Conduct triaxial tests with PWP measurement at multiple points to acquire a better 

understanding of the generation and dissipation of PWP within samples, especially 

clays where the PWP distribution is slower upon loading, and observe a clearer 

delineation of PWP distribution within the soil samples.  
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APPENDIX.  ADDITIONAL DATA 

Sample Relative density 
% 

Type of fine % of Fines (fc) esk 
Initial Confining 

Pressure 

20 90 Plastic 15 0.7 50 

25 45 Plastic   8   0.82 50 

30 90 Plastic 10   1.02 50 

33 75 None   0   0.56 50 

36 90 Plastic 10   0.68 50 

39 50 None   0   0.64 50 

42 25 Plastic   5   0.86 50 

44 45 Plastic 17 0.7 50 

45   5 Plastic 35   1.76 50 

47   5 Plastic 35   1.76 90 

48 65 None   0   0.74 50 

49   3 Plastic 40   2.03 103 

50 50 Plastic 25   1.22 50 

51   4 Plastic 20   0.88 50 

52 35 Loess 15   1.07 50 

53 14 Loess 30   1.21 50 

54 25 Loess 20   1.31 50 

57 15 Loess 10   0.94 50 

58 18 Loess 23 1.5 50 

59 40 Plastic 30   1.25 50 

61   5 Loess 32   1.65 50 

63 50 Plastic   0   0.64 50 

65 15 None   0   0.78 50 

66 12 Plastic 13   1.09 50 

67 75 Plastic 20   0.56 50 

68 40 Plastic 20 1.1 50 

69 10 Plastic 20   1.04 50 

74 12 Plastic 24 1.3 50 

78 12 Plastic 31   1.58 50 

81 12 Plastic 10   0.99 50 

80 12 Loess   0   0.78 30 

84 30 Loess 16   1.07 50 

86 30 Loess 25 1.3 50 

88 30 Loess 30   1.48 50 

90 30 Loess 10   0.91 50 
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Figure A-1. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 25 

 

 

  

Figure A-2. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 20 
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Figure A-3. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 30 

 

 

 

Figure A-4. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 33 
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Figure A-5. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 36 

 

 

Figure A-6. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 39 
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Figure A-7. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 25 

 

 

Figure A-8. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 44 
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Figure A-9. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 45 

 

Figure A-10. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 47 
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Figure A-11. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 48 

 

 

Figure A-12. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 49 
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Figure A-13. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 50 

 

Figure A-14. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 51 
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Figure A-15. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 52 

 

 

 

Figure A-16. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 53 
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Figure A-17. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 54 

 

 

Figure A-18. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 57 
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Figure A-19. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 57 

 

 

 

Figure A-20. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 59 



www.manaraa.com

104 
 

 
 

 

Figure A-21. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 61 

 

 

Figure A-22. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 63 
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Figure A-23. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 65 

 

 

Figure A-24. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 66 
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Figure A-25. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 69 

 

 

Figure A-26. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 67 
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Figure A-27. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 68 

 

 

Figure A-28. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 74 
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Figure A-29. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 77 

 

 

Figure A-30. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 80 



www.manaraa.com

109 
 

 
 

 

Figure A-31. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 81 

 

 

Figure A-32. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 84 
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Figure A-33. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 86 

 

 

Figure A-34. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 88 
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Figure A-35. Deviator Stress (psi) and Excess PWP (psi) vs Axial Strain % for sample 90 
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